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ABSTRACT
We consider methods for the approximate solution of a Fredholm integral
gquation of the first kind, namely

wt) = [ K(t,s) z(s)ds,  t el
S
where K(t,s) is a given kernel, u(t) is given for t = tl’ Ly eees tn’ and z ,
to be approximated, is an clement of a reproducing kernel Hilbert space hR

We assume that the linear functionals Ay te T defined by

Az = | Kitys) z(s)ds

5
are all continuous on hR and we treat the problem of approximating st = z(s)
for s € S as a problem in approximating the continuous lincar functional Ns
by the continuous linear functionals

{A,,t

=t eea,t .
l’t&’ ’n}

t?
With this point of view we do the following:
i) give formulae for approximate solutions, under various conditions

ii) yive pointwise error bounds for these solutions

iii) give several examples of practical reprouucing kernel Hilbert spaces

iv) show that the method of regularization of Tihonov and Glasko and the
method of statistical estimation of Westwater and 3trand are (equivalent)
special cases of the theory presented here

v) show how to choose the regularization parameter when errors due

either to quadratures or experimental measurement is non-negligible,
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ON THE APPROXIMATE SOLUTION OF FREDHOLM INTEGRAL EQUATIONS OF
THE FIRST KIND
by

Grace Wahba

l. Introduction

1.1 Statement and Some History of the Problem

We are interested in the numerical solution of a Fred-

holm integral equation of the first kind, namely
u(t) = f K(t,s) z{s)ds teT (1.1)
S

where 8, T are intervals, K(t,s) is a given kernel on
T x S with appropriate properties and u(t} is given for
t = tl,tz,...,tn, tieT.
It has been noted by a number of authors (see for ex-~
ample (7}, [11], (14)) that replacing the integral in (1.1)
by a quadrature approximation and inverting the resulting
matrix does not always give satisfactory results. No matter how
large n is, there are many functions 2z, including highly

oscillatory ones, such that

ul{t,) = f K(t,,s)z(s)ds, i=1,2,...,n (1.2),
i s i

A discrete approximation of one of these functions is

obtained by the matrix inversion
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Force under AFO3R Grant No. AF-AFOSR-69-1803,




technique. Which one is actually obtained, apparently Ade-
pends more on the quadrature procedure than anything else.
Two maethods in the literature seem to have resulted in satis-
factory numerical examples. The firat method, called the
method of regularization of Tihonov [12] ([13] and studied
experimentally by Tihonov and Glaske (141, goes as follows:

Let
Mﬁ(z.u) s [ (;(t)-u(t))zdtﬁ-a J (Lmz(s))zds (1.3a)
T s

where u is a given function in Lz(T), u, depending on z, is

given by

G(t) = [ K(t,s)z(s)ds, (1.3b)
S

th order linear differential operator

a > 0, and Lm is anm
with continuous positive coefficients. Assume K(t,s) is

continuous, and that

0 = K(t,s)z(s)ds, teT (1.4
s
implies that z(s) = 0, seS.
Then, it is shown in {13], that, for every fixed
ueLle], and every a > 0, there exists a unigue 2m times

differentiable function z = z, which minimizes M;(z,u).
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Tihonov and Glasko [14] provide an argument that Lo defined

by
L z =2 (1.5)

fits into the general theory if K > 0 on T x S. They then

experiment with a numerical algorithm based on finding z to

minimize M;(z,u) as follows. Quadrature points {si}k ‘
i=1
s.€S, and {t.}n , t.eT are chosen. Let t_ be the left
1 ] j=1 B) °
boundary of T, define
- - - - ]
zZ = (21’22""'zk)
-— ]
u = (u(tl),u(tz),...,u(tn))
and Eo = 0. u is a given vector. Define ﬁi(i,ﬁ) as
STEI RS RN
My (z,u) = qa.( K(t:,s.)o.z,~-u(t.))
1l je1 s Y L7045 3
- = 2
k-1 (2., .-2.)
+ a z i+l i (1.6)
1=0 (s;41-8;)

where {d,}" , d, » 0, and {Ji}k are appropriately chosen
3= 3 i=1
quadrature coefficients. ﬁi(i,ﬁ) is to be thought of as a

discretized version of Mg(z,u) of u.3a)mdﬂ1Lm glven by

#990 -3
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{1.5). Let the n x k matrix K, the n x n (diagonal) matrix

D and the k x X 3ymmetric matrix Q be defined by setting
M} (z,0) = (Rz-0) 'D(KZ-u) + az'QZ (1.7)

and matching the coefficients of z, u and az in (1.6) and
(L.7). For a given u, the vector z which minimizes

ﬁ:(i,ﬁ) is well known to be given by

1

et >

= (K'DK+aQ) “K'Du (1.8)

It can be verified by direct manipulations upon the matrices

~

involved that another formula for z is

~ e - 1o --l-
7z =0 R (R R wap ) Tu (1.9)

Tihonov and Glasko compute z from (1.8) as a discrete approxi-
mation to the function z_(s) which minimizes Mi(z,u). They
do this experimentally, for several va'i1es of a, by beginning

with a u obtained from a known function u(t) satisfying
]
u(t) = S K(t,s8) 2z (s)ds
S

®
where z 1is a given (smooth) experimental function. For 1

certain values of a, the results are "good"”, i.e. the com-

~ ~

ponents z; of 7z satisfy
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z z (si).

More recently, Ribiere [8] has also studied the method
of regularization. 1In (7], (8] and i(l4] tlie experimental
results suggest that there is an optimum choice of «. How-
ever, a theory making precise the optimal choice is apparent-
ly not available.

The second method, discussed by Strand and Westwater
[11] and called "statistical estimation" of the solution,
is as follows: Let the n x k matrix K be defined as before.
Let 2 = (zl,zz,...,zk)' and ¢ = (il,‘z,...,(n)' be
normally distributed zero mean random vectors with (prior)

covariance

Ezz' = 0%
Ece! = aD-l
EZe' = 0

Let U = (Ul'UZ""’Un) he a normally distributed random

vector defined by

U= K2 4+ ¢ {(1.10)

Tt is well known that

#990 -5




-1

1 ) u (1.11)

1"E'+01D—1

E(z|u=u) = Q K" (RQ~
Strand and Westwater replace the equation (1l.1) with
the model (1.10), where the unknown vector z is replaced by
the random vector 2 with prior distribution N(O,Q_l), and
¢« is to be thought of as a "noise" vector independent of =z

and having the distribution N(O,uD“l

). The estimate for the
"random" vector Z given the "data" u is taken as the right
hand side of (1.9). Hence the method of regularization and
that of statistical estimation are in practice the same for
appropriate choice of D and Q. Strand and Westwater per-
formed numerical experiments (again beginning with a smooth

*®
known solution z ) analogous to those of Tihonov and Glasko,

and again obtained "good” results.

1.2 Purpose of This Not: and Basic Assumptions

Both of these methods can be embedded in the general
theory of the approximation of continuous linear functionals
in a reproducing kernel Hilbert space. The overall purpose
of this note is to demonstrate this statement in some con-
siderable practical detail. Ags a byproduct of this theory
we obtain a rationale for choosing a, to minimize a certain
error bound. We also obtain pointwise error bounds on the

solution involving a Hilbert space norm of the (unknown)

solution z. These results provide a criteria for the selection

-6~ #990




of a good Hilbert space in which to operate. Several
practical e.amples are given,

We assume the functior z to be an element of a repro-
ducing kernel Hilbert space # of real-valued functions de-
fined on S. This means that the linear functionals Ns’

seS, defined by

st = z(s) ’ z e # (1.12)

are continuous for every se€S. This is just what is needed to
establish point wise error bounds. 1In this case, for VseS
there exists an elemen% dssS for which

<Gs,z> = z(s) v vze H (1.13)
If we define the kernel R{(s,s') on &§ x § as
<GS,GS.> = R's,s"') (1.14)

then R(s, s') is positive definite. Let R; be that function
o
defined on S whose value at s is given by

Rs (s) = R(so,s) {(1.15)

o
By the Moore-Aronszajn Theorem (see [2]), to every positive
definite kernel R(s,s') defined on S x S there corcesponds

a unique Hilbert space ¥ = JiR with the following properties:

#990 —7-




1) R € X vgoes

o
2) <z,Rs°> - z(so) ’ ze B, soes
Hence 63 of (1.13) is given by
6g * Ry (1.16)
and
<RS,RS.> = R(s,s') (1.17)

Equation (1.17) is the source of the terminology "reproducing
kernel”. The elements {Rs,ses} clearly span ¥ .
We make sufficient assumptions on K tc ensure that the

linear functionals At defined on ¥ R bY

Atz = é K(t,s)z(s)ds , z€ “R (1.18)

are continuous for every fixed teT. The problem of estimat-

irg z(s) for a particular seS given that ze #_ and the in-

R
formation of (l1l.1), namely, At zZ= u(ti), i=1,2,...,n may

i
then be viewed as that of approximating the continuous linear
functional N_ defined by (1.12) by the continuous linear

functionals {A defined by (1.18).

}n
=1

-8- ' #990




To discuss the problem practically, we must know when At
defined by (1.18) is continuous, and how to find its representer
Nyo The answer is given by Theorem (1.1l) and its corollary
which will conclude Section 1.

Once the representers {nti):=1 are known, there are
several points of view that one may adopt when approximating
one continuous linear functional by several others. Perhaps
the simplest is as follows. Let iin be the subspace spanned
{nti}?=1' and P the projection operator onto this snub-
space. Suppose “n is n dimensional. Approximate RS by

PnRs. Then if

<ntilz> = u(ti) 4 i = 1,2,--.!'1
we have ‘
<PnRs,z> = <Rs,Pnz> = (Pnz)(s)
= (n (5);“ (5),..ef‘. (S)) ’(n N >,..:.%¥N N > - ‘.l(t )
ty t, t, S t e \ . 1
I . L ] L ]
'\ L] 1 -
\ cot /
<n N > -..<T] ,Tl > u(t )
tn tl tn tn n

Pnz is, of course, that element in # of minimum norm which

satisfies (1.2). One then has the point wise error bound

#990 ~9-
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|z(s)-(P 2) ()| = |<z-Pnz,R8>| - |<z-Pnz,Rs-PnRs>|
< el 11Rg2 R 1 < [zl 1IRg-2,2, 1] (1.192)

where IIRS-PnRs|| can be computed for any fixed s. Hence in
solving any particular practical problem, one should expect
good results if one can choose a reproducing kernel Hilbert
space in which the norm of the unknown function z is small.

We actually generalize this point of view in two ways. First,
if “1 is a Hilbert subspace of # of codimension m < n, then
it is possible to approximate R, by {nti}znl in such a way
that Rs and its approximant differ by an element in Hl. In
this casa, it is shown (in lLemma 2.5) that the right hand

side of (1.19a) may be replaced by
||Plz||||Pl(Rs—R')|| (1,19b)

where P1 is the projection operator onto 31, and ﬁs i3 the
approximating element. Here we will be able to calculate
||P1(Rs'§s)||' and one chooses an ¥ and an &, such that it

is believed that the norm in # of P,z is small. This is the
geometry of the approximation of continuous linear functionals
used by Golomb and Weinberger [4]. For other somewhat re-
lated work on the approximation of one continuous linear

functional by several others see [3] and [(9].

-10- #990
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Futher generalizing, we actually consider in some detail

the cases where u(ti) are known only up to some error

{(experimental error) or the values n, (s) of the representers

t
nti are known only imperfectly (quadr:ture error). In this
case the error bounds analagous to (l.19a) involve the magnitude
of the (experimental or gquadrature) error. We show how an
approximate minimization of these error bounds leads in a
natural way to a family of algorithms, which contains the

method(s) of reqularization and statistical estimation.

Section 2 provides statements of all the Hilbert space
lemmas that are used in the sequel. They are generally well known,
Since they may be proved by elementary methods, no proofs are
provided. Section 3 provides examples of some reproducing
kernel Hilbert spaces. Concrete examples are fairly hard to
come by. Section 4 presents the main theorems concerning
approximations to the solution z and their properties., For
concreteness sake, but without loss of generality, the
theorems are stated with respect to a particular reproducing
kernel Iliilbert space which is related to the method of re-
gularization as discussed in (12}, [13], {[14]. Section 5
discusses the introduction of quadrature error and appropriate
ways of dealing with it, and a rationale for choosing a is

given. 1In Section 6, the precise relationship between i

#9390 -ll-




statistical estimation, and the approximation of continuous

linear functionals is described, and it is shown how in

general one ohtains the sa e numerical result from the two

approaches. i
We conclude this Section with Theorem 1.1 and its

corxollary.

1.3 A Preliminary Theorem

Theorem 1,l. Let A be a continuous linear fanctional

‘on “R’ and let vye uR be defined by
Az = <y,2> ' ze &
Then P(s), seS, is given by the formula:
Vv(g) = ARs (1.20)

Conversely, let A be a linear functional defined on #_ and

suyppose that the function ¥ defined in S by
P(s) = ARs (1.21)

satisfies yYe H Then A is continucus.

R'
Proof. Since ¢(s)e uR, y(s) = <¢,Rs> = ARS. Conversely, .

if ye “R’ then the continuous linear functional A defined by

-l12- #990 ]




Rz = <y,2> (1.22)

coincides with A on the span of {R ,seS}, since KRS = y(s).

But the span of {Rs,seS} is “R'

Corollarx. Let X be such that
/[ K(t,s)R(s,s')K(t,s')dsds’ = 82 (t) (1.23)
S S

is well defined and finite as a Riemann integral for each

fixed teT. Then the linear functicnal At defined by
Az = S K(t,u)z(u)du , zc “R (1.24)
S

is continuous on NR and

Atz = <nt,z> , teT , ze &

where ng € #_ is defined bv

R

"t(S) = AtRs = é K(t,u)Rs(u)du ’ (1.25)

2
ana ||A )% = 0%(0).
Proof. The hypotheses on K imply that there exists

(for each fixed t), a triangular array

#990 -13-
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8127822

*
L]

Sk Bk Bk

such that the Riemann sums

k=1 2-1
I 1 K(t,s;, )R(s

151 §51 1krByg RIEBy) (8507 85x) (5541, 4785)

converge to ez(t), as k, 2 + o, maxlsi+1 k—sik| + 0. But then,
’

using (1.17), it follows that the sequence nék), k=1,2,...

defined by

nfK) - kfl K (t,s,.) (s -8 )R k= 1,2
t R TS IS I 120000

(k)
t

converges pointwise (in s8) to n, given by (1.25), which is

is a Cauchy sequence in ¥, IInék)H2 ~ 82(t), and n
therefore in Hoo

2. Hillkert Space Lemmas

In the lemmas of this section we have the following:

m <n, # is a Hilbert space,

H = N & N

-14- #990
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where By is an m-dimensional subspace, Bl =} é‘and Po

and P, are the projection operators onto “0 and H, re-

spectively. {ni}?=1 are, ineach lemma, n elements in H

satisfying the following two conditions

. n .
(i) {Poni}i=1 span &,
(ii) {plni}2=l are linearly independent.
Let
Pl”i = Ei . i=1,2,...,n

let {¢v}$=l he a (fixed) orthonormal basis for B and let

X and | be the m x n and n x n matrices with entries de-

fined by

(X]

ui <¢uoni> ’ u=1,2...m (2.1)

[Z]ij <gi,gj> i,1=1, 2...n
Conditions (i) and (ii) guarantee that X and | are of full

rank. We let ¢, £ and n be vectors of m, n and n elements

of ¥ respectively, given by

<
i

(¢ll¢2""¢m)

E = (E),Ep,eenby)

= | reee
4990 n Ny Ny n) 5.
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and u be a given vector of real numbers,
u = (ul'“Z""“n)'
Lemma 2.1. The solution to the problem: Find ze #
to minimize <Plz,Plz> subject to <z,ng> = Uy . i=1,2,...n,
is unique, and is given by z,

z = ¢(x)"1x')'lx{'lﬁwg({'l-):'lx'(x['lx'fle'l)F' s (2.2)

Lemma 2.2. Let Goelt be given. The solution to the

problem: Find ye # of the form

n
y = c,n (2.3)

where ¢ = (€y+CyseeeCyi 18 a vector of real numbers, to

minimize
1P, (5 _-v)| |2 (2.4)
1P 1057y
subject to
1P, (8,-y) 12 = 0 (2.5)
o' o

is unique and is given by 60.

-lt= #990




A

5o = 3xI7hx T Ixp T B (0T -T T ke Tl T e

(2.6)

where ¢ and £ are the vectors of real numhers (depending

on 60), given by

¢ = (<5°1¢1>I<6°r¢2>l o '<6°'¢m>)
(2.7)

vl
1

(<6°,£1>,<6o,52>,... ,..<50,£n>).

*
Let the bounded linear operators A and A be defined

by (2.2) and (2.6) respectively as

Az =z , |if uy = <z,ni>, i=1,2,...n,ze #

*6 ~
A o (o]

L}
o
-
o
m

-

*
Inspection of (2.2) and (2.6) reveals that A and A are each
idempotent, and are adjoint to each other, that is:

Lemma 2.3 If z is of the form of the right hand side

of (2.2) for some u, then z = z.

Lemma 2.4

<z,60> = <z,8 > = <z,6o>, z,6 e & (2.8)

#990 -17-
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Lemma 2.5

A

<z-z,8 >° = <z-z,8 -8 >° < ||P1(z-z)HIP1(60-6O)||

2 ~
[zl 121py (6,-8 ) 1[% (2.9

Ia

Furthermore, a calculation gives
L.emma 2.6

1P (5 -5 V|12 a <P,6

10 "o 1l

co-1=
o'P1%0> - éz ¢

+ GBI Yk ket L 32T ik 0
(2.10}

where ¢ and { are given by (2.7).
Lemma 2,7 Let V = {vij} be a non-negative definite
1 ij

r x n matrix with ijth entry of V - given by v' . Then the

solution to the problem: Find zed to minimize

"
sa

- - 1j - P,z
M(z) i,§=1 (<z,n >-ug)v (<z,nj> uj) + <Pyz,P,z>

(2.11)
is unique, and is given by z,
z = oxs™ix) " IxsTIar + gesTlas7ix (ks hxey ThksTh e
(2.12)

-18- #990




where

S =]+ V., (2.13)

Lemma 2.8 Let {Ei}2=l be n elements in # satisfying
<ei,ej> = Vg and let Gosﬁ be given. The solution toc the

problem: Find ye ¥ of the form

n
y = _21 d; (n;+e,) (2.14)
1=

where d = (d),d,,...d4.) is a vector of real numbers to be

found, to minimize

I Fagng 12+ 11 ] 12
§_ - 1 d.n, + e, (2.15)
0 i=1 11 1;1 11
subject to
t 2
e (8, - 121 andl®=0 (2.16)

is unique, and is given by 60,

5 = 'c't»(xs"lx’)'l

R x¢ Lin+e) ' + E(s™t-a"ts (xs™ %) " Yxs™L) (n+e) ¢

{2.17)

where ¢, £, depending on 60 are given by (2.7), § is given

by (2.12), and the vector of functions (n+e) is given by

#990 w1ger
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n+e = (nl+cl,n2+52,...nn+en) (2.18)

Lemma 2.9 Let 2z satisfy <z,ni+ei> = u, i=1,2;...n,
then if z is given by (2.12) and 50 by (2.17), then

~ -~

<z,do> <z,60> (2.19) Do

Adsa ikl

Lemma 2.10 For d = (d;,d,,...d,) any vector of real

numbers, and z and z as in Lemma 2.9, 60 as in (2.17) %

~ 2 ~ 2 2 2 2 5 2
<z-z,8 > = <2:50‘6°> b 201 1z}| (‘|6°_i£1dinil| +l|i£ldiei'| )] _

(2.20) ;
.
]
If € ¢ #4014 =1,2,...0, then § -6 € ¥, and ) % %
- 2 ) n ) n 2 f
<z-z:5°> < 2[||P13|| (||5°'_Z di“i" +!"Z di€i|| )1 R
i=1 i=1 :
(2.21)

3. Examples of Reproducing Kernel Hilbert Spaces

3.1 Generalities

Let S, Q@ each be the real line or a closed subset,
let G(s,u) be defined on 8 x Q with the property that

G(s,u) e L,(Q) for every fixed s, and suppose further that ' §

-20- . #990



0 =/ G(s,u)p(u)du, chz(Q), seS (3.1)
Q

implies that p = 0. Then the range of the operator G

defined by
(Gp) (s) = f G(s,u)p(u)du (3.2)
1]

is a reproducing kernel Hilbert space of functions defined
on S. If we call this space “l' then it has reproducing

kernel Ry given by
Rl(s,s') = é G(s,u)G(s}u)du (3.3)
with inner product
<fl'f2> = é pl(u)pztu)du (3.4)
where
fi(s) = (Gpi)(s) = é G(s,u)pi(u)du, i=1,2 (3.5)

Suppose “1 is contained in some larger Hilbert space

of functions defined on S, and {¢v}$=1 are m orthonormal

functions on § all in Mi . Then ”o’ the m dimensional

space spanned by {¢v }l\‘:'—-l’ is a reproducing kernel space with

#990 -21-
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reproducing kernel Ro given by

Ro(s,s') =

it ~23

by (s) 0, (") (3.6)

v=]

and H = uocb hl is a -eproducing kernel space with re-

preducing kernel R given by

R(s,s') = Ro(s,s') + Rl(s,s') (3.7)

3.2 Reproducing Kernel Spaces Associated with Green's

Functions

Let Lm be an mth order linear differential operator
on {0,1] with m-dimensional null space. Let the linear

functionals Mu be defined by

v (v-1)
Muf = vglyuvf (0), u=1,2,...m (3.8)
where the matrix {Yuv} is w.n-singular. Let G(s,u) be the

Green's function for the equation me =g, Muf =0, p=1,2,...Mm,

and let {¢ ™

vly=) Span the null space of Lm with

Mu¢v = Guv (3.9)

where éuv is the Kronecker §, We may take ul as the

collection {f: meeLz[O,I], Muf =0, u=1,2...m,} and kto

-22~ #990
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the space spanned by {¢v}§=l' 4 = H, @ ul then has inner

B VRSN S N .

product i
m 1 %
<€ E,> s § O (ME)) M F)) + T (L f,) (L f5) ds (3.10a)

vm) 0

{

and :

2 1 2
||P1f|| = g (me)sds . (3.10b) 3

Two simple examples are:

dm
a) L 3= —
e M g8
m=-1
Gls,w) = {528t
T (3.11) -
Sv-l
¢6,(8) =oey7 4 vV = 1,2...m

Y =1, uw=v, = 0 otherwise

uv
n m
b) 1. = I (D+a), {a .} . distinct positive real
m v=1 v v V=1
numbers
m -a,(s-u) -1
G(s,u) = | ce ;82u, c = N (oy-a)
v=1 v
= 0 otherwise (3.12)
-a,s

¢\,(S) = c e

Mf= T (D+a
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where (D+av)f = f' + “vf' This type of reproducing kernel
space may ba used to construct spline functions. (See [3}])

3.3 Spaces of Functions with Rapidly Decreasing Fourier

Trans form

Let W({A) be a crmplex-valued Hermitian function of
A on (-=,=) with W(A)eL,(-=,=) and jw(a)| > 0, all real A .
Let G(t1) be the inverse Fourier-Plancherel Transfona of

W(\) which we write as

G(r) = £ e ™ woyar . (3.13)
Let
L] o
R(s,8') = [ G(s-u)G(s'-w)du = J e &8Ny yu*n)an
{3.14)
R(s,s') is positive definite, and, since |W()A)| > O,
0= [ G(s-u)p(u)du, -= < 8 < ™, peL2 (3.15)

implies p(u) = 0, & , the reproducing kernel space for

R(s,s8') is the collection of all functions f of the form

f(s) = S G(s-u)p(u)du PpeL, (-=,») (3.16)

with inner product (by Parseval's theorem), given by
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et el

" Fl(x)F;(x)
= J A2 o (3.17)

<f.,f.>
1772 e woaw ()

where F, is the Fourier-Plancherel Transform of £,. H
contains only functions whose Fourier transforms F(A) de-
crease sufficiently rapidly that F(A)/W(A)eLz(-w,w).

For a concrete example, let g, p be non-negative in-
tegers with g < p, _.et {Qu}§=1’ {Bv}3=l be p + q distinct
positive real numbers, let

P
P(A) = N (ir-a )

U=l s

q
Q(A) = 1 (iA-Bv) (3.18)

v=1 N 7
W(A) = Q(A)Y/P()).

We have
-a T
G(t) = E ce Y, T>0
u=1 ¥ -
(3.19)
=0
where
1 no
T O,
#990 -25=
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and

-a _|a-s"|
R(s,8') = 6 e ¥
vzl v

(3,20)

c C
: gV
e\’ = g uuﬂxv

=1

- - !
(for a = 0, p = 1 we have R(s,8') = e als-s I).

Letting m = p-q, ¥ is here the collection of all

functions with absolutely continuous m-1st derivative and

th

square integrable m~ derivative. Let

-B.T
G,(1) = de V ’ Tt >0
Q vil v =~
(3.21)
.o e
where
-1
d "= I (B.,-B) .
v v 3 v
Let
(GQf)t = -£ GQ(t-s)f(s)da (3.22)
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and let
L f= N (D+a )f . {(3.23)
=l s
For felX , (GOf) has p-1 absolutely continuous and p
square integrable derivatives, and the innes product in ¥

iz given by

(-
<f1,f2> = [ (LPGQfl)t(LPGQfZ)tdt' (3.24)

3.4 Spaces of Band Limited Functions

Let 3A be the subset of Lz(-w,w) of functions whose
Fourier transforms wvanish outside [-A,A]).

Let

-]

S s(t-u)w(u)du (3.25)

-0

G(1)

where

sin At

s(t) = ™t

{3.26)
A

wia) = [ e
-A

ivdy (ayax

A g AN

and W(A) is assumed to be a Hermitian function of A with no

real zeroes in [-A,A]. The equation

0= f G(t-ulp(u)du - < t < = (3.27)

#990 A
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has solutions in L,(-=,») but not in 3,, since (3.25)-(3.27)
imply W(A)P(X) = 0, =A < A < A, where P()) is the Fourier-
Plancherel transform of p(u). (Note that S(A), the Pourier-
Plancherel transform of sin Atv/mt is S(A) = 1, |A] <A, = 0
otherwise.)

3 is a reproducing kernel Hilbert space with inner

A
product

A FLOF, (0
<f1,f2> = f
=A WAIW (M)

ax (3.28)

where Fi is the Fourier-Plancherel tranasform of fi' i =1,2,

The reproducing kernel is

A '
R(s,s') = [ e 3 E8 g nar . (3.29)
-A
If we set
2
w{A)" = 1, |A| < A
(3.30)
= 0 otherwise
then

R(a,s') = ELE?%égggil (3.31)

and 3A ies a Hilbert subspace of Lz(-w,w). Slepian and

Pollack ([10] consider the space of bandlimited functions with

reproducing kernel (3.31). A restatement of the sampling
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theorem tells us that the functions “j defined by

A R
ny(s) = Ay etmm2m3/N) pohay, 3= ...-1,0,1,...
ffK '/\

(3.32)

are a complete orthonormal basis for 3/\

4. Typical Theorems

A variety of theorems now fall out by applying Theorem
1.1 and the lemmas of Section 2 to the reproducing kernel
Hilbert spaces of Section 3. For concreteness only we
state them with reference to the example of Section 3.2,
since this example provides a direct comparison with the

method of regularization as discussed by Tihonov and Glasko.

Thus, let Lm be an mth order linear differential operator
on [0,1] with m-dimensional null space spanned by {¢v}$=1'

(m-1)

and & = {z:LmzeLz[O,l], z absolutely continuous}. Let

G(s,u) be the Green's function for the equation

1]

Lf=aq, e ) =0, v=o0,1,2,...m1

1] The reader may verify that the choice of the matrix
{Auv} in (3.8) is irrelevant to the solution of our problems,

we take it as I.

#390 ~29-
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and

1
Rl(s,s') = [ G(s,u)G(g',u)du {4.1)
0
m 1l
R(s,s') = ] ¢,(8)¢ (s') + J G(s,u)G(s',u)du
val v 0
(4.2)
We suppose that K(t,s) satiafies that
11
é g K(ti,s)R(s,s')K(ti,s')dsds' i=1,2,...n
is well dafined and finite as a Riemann integral,
Let ni(nie #) be defined by
1l
ni(s) s J K(ti,u)R(s,u)du (4.3)
0

Define the elements 7; € ¥, and the matrices X and ] by

1
Pini = Ei) Ei(s) = é K(ti,U)Rl(B,\l)du, 1 = 1;2;---!\,

(4.4)
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X = {xui}, po=11,2,...q, i =1,2,...n

} = {aij}' i,j=1,2,...n

1
Xui = <ni,¢u> sé K(ti,u)¢u(u)du (4.5)

11
<gi,gj> - éé K(ti,s)Rl(s,s')K(tj,s )Ydsds'

(4.6}

Theorem 4.1 Let u = (u,,U,,...u ) be a vector of n
real numbers, let V = [Vij} be an n x n symmetric positive
definite matrix with V_1 = {vij}, and suppose that matrices
X and | defined by (4.5 and (4.6) he of full raank. For

~

ze ¥ , define the numbers uy by

st

~ ~

u; = ui(z) = <n;,z> = S K(ti,s)z(s)ds (4.7)

(=]

i=11],2,...n

Then

{i) There is a unique rfolution L to the problem:
Find ze# to minimize
1

M(z) = ) Z (Gi-ui)vij(;j~uj) + a 6 (Lmz)gds (4.8)

#990 ~3)-




given by

s -1,y =1y n=1=, -1 -1 =1y, =1 =1, =
z, = S(XTLTX)TXONR + g(rgt-rotxr e txy Tixroh@

(4.9)
vwhere ¢ and £ are the vectors of functiorns
b = (@1.¢2.---¢m)
£ = (511521-"5")
and
r,=1+av (4.10)

hA{ii) lig Z, = Z,s given by
[y & 4

~

z, = oI )" ITME ¢ eI -I e eIy g h &

(4.11)

is the (unique) solution to the problem: Find zed to

minimize

1 2
g (Lmz)sds
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subject to ui(z) = U, i=1,2,...n.

(iii) For any ze # satisfying

1l
u; = f K(ti,s)z(s)ds i=12,2,...n (4.12)
0

and z, given by (4.11) we have the pointwise error bounds

. 2, 2, .} 2 .
lz (s)-2z(s) | < @ (s){(j)’(Lmz)s ds} ( .1;)
where o
o?(s) = R (s,8) - £() 71 E(s) (4.14a)
+ #E-Ee I x0T E - [Tx)
and S
6(s) = (¢)(5) ,0,(s) .00 (s),
E(s) = (£,(8),6,(5) ..., (s]) o {4.14p)

(iv) If ze d has the form

n
c,b,(c) + T d;& (s) (4.15)

m
z(s) = ]
=1 i=1

AY

where d = {dy,dy,...d ) is any vector satisfying Xd' = 0,

and we set uy in (ii) as

#990 ~33~
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1
u, = S K(t,,s)z(s)ds (4.16)
i 0 i

then the solution ;o in (ii) satisfies

N >
|
]

(4.17)

Proof: Assertion (i) is Lemma 2.7 ané (ii) is Lemma
2.1. The remarkable error bound of (iii) is obtained from
Lemmas 2.5 and 2.6 upon setting 60 as the representer of
the continuous linear functional N, defined by N,z = z(s),

ze ¥, that is, 60 = R,. In this case we have

|§°(s)-z(s)| = |<§°-z,ns>|
<Rgs,> = ¢, (8) (4.18)

<RB'E1> - Ei (s)
.4iv) is another way of writing Lemma 2.3.
Other minimization problems may ke handled within the
context of the gecometry of reproducing kernel Hilbert space.
For example, the solution to the problem: Find z¢ # to

minimize M(z) of (4.8) subject to the linear inequalities

a, < z(sl? h bl ' L = 1,2,...* ’ szes .§4.19)

i
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may be reduced to a standard problem of minlinizing a (finite)
quadratic form subject to lirear inequalities, as follows:

Inequalities (4.19) may be written

ag < <Rsz'z> Sbye &=1,2,...k {4.20)
Then, any solution z to this minimization problem must

be of the form

m n k '
z= ] c o, + {1 a8, + Zl e R, (4.21)

“for some coefficients {cv}, {di} and {el}. By substituting
' {4.21) into (4.20) and (4.8), the minimization problem re-
_rduces to the standard problem of minimizing a quadratic form
‘tin the coefficients, subject to a set of linear inequalities.
This minimization problem may be recognized as a problem in
“‘control theory. See, for example (5].
Side conditions which are just sufficlent to specify
Poz give especially simple looking answers and error bounds.
For example:
Theorem 4.2. Under the assumptions of Theorem 4.1:
(i) The solution to the problem: find ze ¥ to

minimize (4.8) subiect to the boundary conditions &

B 4 = = -
8’ Mvz <¢v,z> ev, v 1,2...m (4.22)

#3990 35

owtlib s Shallok i il v 2t

'.i
|
i
i
3




BT

is unique and is given by 2z,,

ey N S TR

[a)

= 68" -1, w5 -
Z, $8' + U‘a (u~-X"0"') (4.23)

where 6 "(01,62, . ;em)

ii) 1lim z_= z_, where
asd @ o

L)

z, = $8' + e3" L (@-x"8") (4.24) Py

ja the solution to the problem: Find z¢ ¥ to minimize

i
H
H
i
H
2
H
3

1 2
.g (L, 2) gds (4.25) 3
gf
subject to R
:
0 }
Mz =8, V= 12,...m (4.22) »

(iii) If ze ¥ satisfies

1
u = é K(ti,s)z(s)ds (4.27a)

and

Mvz = Bv, v=1l,2,...m (4.27b)
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then z, of (4.24) satisfies

. 1
lz(s)-z ()| % < gz(s){é(Lmz)idu} (4.28a)

where

o’(s) = B} (s,5) - E(a)] E(s)" (4.28b)

and £(s) is given by (4.14b).

Proof: ze¥, Mvz = ev, v=1,2,...m imply that

and
1 m
e é K(ty,s)z(s)ds = <n;,2z> = <f,;,Pyz> + [ ¢ x

v=1 vi

(4.29)

In this case (4.8) may be written

m s s m
= -(u. - 13 -(u.-
M(z) i§-‘<ﬁi'91“’ (uy vglevai))v (<§4,Pyz>-(u; vglevxvj))

+ al|p z]| (4.30)

Since {gi}2=1 and P,z are in 1’ We may find (Plz) to

minimize (4.30) or (Plz) te minimize (4.25) subject to

#990 ~37-
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m
vy - vzl 0,Xyy = <Ej/Py2z>, 1 =1,2,...n

via Lemmas 2,7 and 2.1 respectively, by setting m = 0,
H= ¥ 1 in these lemmas. To prove (iii) let PE be the

n

projection operator onto the subspace spanned by {51}131'

If z¢ ¥ satisfies (4.27a) and (4.27h), then

~

PEZ = Piz, (4.31a)
Pz = Pz, (4.31b)
and hence
z -3 = (Py-P,)z. (4.32)
But
2(s)-z_(8) = <z-z,R_>
= <(P1-P£)2,Rs>
= <(P1-P§)z'(Pl-P£)Rs> (4.33)
_ I:lence
2(8)-2(s) < 11 (®-P )zl [|[P)-PIR || < [{Ry2l 1] (PP iR ||
(4.34)
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But

ol(s) = ll(PI-PE)Rs|'2 (4.35)

A direct comparison with the solution of the methods
of reqularization and statistical estimation obtains, as
follows:

set V-1 = D in (4.8) where D is the diagonal matrix of
(1.7), and set @ = 0 in (4.23). Choose {s;}%_ , s,c(0,1],

as in Section 1 and let
- ,
u = (\11,02,..oun)

be a given vector of real numbers and

2 - (21'22'...§k). B
where
- ~ ~ - -1-
z1 = za(si), z, = ET "u
Then
z = =(J+ap Y7 1a (4.36)

where E is the k x n matrix with i, " entry

Ej(si) = K(t.,u)Rl(si,u)du {4.37)

J

OWwH
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and ] is the n x n matrix with i, jth entry

11
<Eyefy m LT K(ELWR) (900K (kg 0t dudut (4.38)

1f {02):-1 are a set of suitably chosen gquadrature co-

efficients, then we have, for purposes of comparison,

approximately
k
Eylsy) ~ 221 K(ty,up)R; (84,9500, (4.39)
Pl
<E. 6> = K(t;,0,)R, (u,,u,,)K(t ,u,)0,0,,
i’™y gi1 gre1 el At Bhied A A I A A
(4.40)

Let R be the n x k matrix (of (1.7)), with i, 3" entry
K(tj,si)oi, and R be the k x k matrix with 1’jth entry

Rl(si'sj)’ Then we may write (4.36) as

- e o

R (RRE'+ap" 1) "1 (4.41)

(11
4

We may identify R with 0™l of section 1 as follows:

Suppose fe Hl, then if me = g, we have

l
f(s) = J G(s,u)g(u)du (4.42)
0
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and

1 2 1,
/ (me) ds = [ g“(s)ds (4.43)
0 0

Let f = (£(sy), f(sz),...f(sk))', g = (g(sl), 9(52),...g(sk))'.
G be the k x k matrix with ijt™® entry G(si.sj)oj and D be

the k x k diagonal matrix with i, fh entry o, .

Since
1l
R(s,s') = f G(s,u)G(s',u)du, (4.44)
0
we have
- - ..1..'
R = GD0 G {(4.45)
also
f » Gg (4.46)
1 2 1, -1 -1 -1
£'0f « f (L _£f)Cds = fg“(s)ds = g'D g = {'G DG f = £'R °f
o m's 0 o g
(4.47)

Some questions of convergence may be answered as follows:
For simplicity, we consider that the boundary values Be of
the solution z to (1.1) are known. We may then consider,

without loss of generality that z and z, are in ¥ 1’
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Let the family of functions {,e¥,, 0 < t <1 be

defined by

1l
Et(s) - é K(t,u)Rl(s,u)du 0

(A
(g
{A
[

(4.48)

If the family of functions {Et, 0<t<l} span the
{separable) space ”1' then gz(s) of (4.28), will tend to
0 for each s as the set {ti)?_l becomes dense in [0,1]., by
(4.35). A necessary and sufficient condition that

{£t, 0<t<1l} span Byo is that
<Egs2> =0 0 <t <1, ze ¥, (4.49)

implies that z = 0. But (4.49) may k2 rewritten

1
J K(t,s)z(s)ds =0, 0 <t <1, zeu (4.50)
0

imples z = 0, There does not seem to be a straightforward

general way of establishing a rate at which
o(s) = || (®-p R |17 (4.35)

tends to zero, as, say sup|t1+1-ti| + 0, if indeed such a
rate exists. However, results have been obtained regarding

the convergence of ll(Pl-P£)6|| when &¢ & , is "very smooth”.
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Thus error rates for the pointwise approximation of very

LT
ST

smooth z, or for the approximation of continuous linear

functionals with very smooth representers, are availab -e.

These results will appear separately.

S. The Introduction of Quadrature Formulae ar.d the Choice of a

If the integral

Ei(s) = % K(ti,u)Rl(s,u)du (4.4)
can be evaluated analyvtically at values of s for which it
is desired to estimate z(s), and Xpi and oij of (4.5) and
(4.0) are known exactly, and computational and experimental
errors are negligible, then it is natural to estimate
z(s) by ;O(s) of Theorem 4.1 or Theorem 4.2. The purpose
of this section is to study the situation where {Xui}' {Oij}

and {Ei(s) }1?_. must be evaluated by quadratures. where

i=1
gquadrature errxor is the primary source of error. Let

{Sb}§=1, skelo,ll, and {mk}§=1 be suitably chosen quadrature points
and quadrature coefficients, respectively. We show that this

situation leads in a natural way to estimating z by the solution to the

problem: Find ze ¥ to minimize

_ n N 2 1 2
M(z) = izl (“i_kllx(ti'sk)mkz(sk” + A é (L, 2z) Sds

(5.1)
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where )\ is chosen to approximate the mean sgaare guadrature

error. Define n; € # by

~

n.

N
i " ) K(ti,sk)mkﬂs i=1,2,...n (5.2)

kel k
Letting Rl g be that element of 141 whose value at s is
14
k ~
given by Rl'sk(s) = Rl(s,sk), k=1,2,...N, define Ei € H,y
by

-~

N
8 = kzl K(ti'sk)mknl,sk , i=1,2,...n (5.3)

~

Then Plni "= gi, i=1,2,...n. Xyi given by

- ~ N
Xpi = Nje0,> = k£1 K(ty,s ) w e (sy) (5.4)

is a quadrature approximation to xui' Gij given by

A A N N
((ij = <€il€j> = kzl E’Z:l K(ti'sk)mle(sk'sQ)K(tj'82)“’2

{(5.5)

is a quadrature approximation to o5 and Ei(s) given by

3
~ N
£,(s) = El K(t;,s), )wR, (5,8,) (5.6)
k=

is a quadrature approximation to Ei(s) of (4.4}, for each s,
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Define € € # by

~

ei = Tli'ni (307)

The problem may now bhe viewed as that of approximating

A

z(s) = <Rs,z> from the information u; = <ni+ei,z>, i=1,2,...n,

or, alternatively approximating RS by {ni+ei}?“1: where the

.n .
{e;};_, are unkaown.

Let

n A
y = 121 dj (ny+e,)
where d = (d,,d,,...d ) are to be found so that y is a good

approximation to R.. If we txy to chopse,a to minimize

HR,-y|| in the error hound
l<z,Romy>] < Lzt IRyl o (5.8)
iit is necessary to know <Rs'€i> = ei(s), i=1,2,...n,
‘whizh is assumed unknown;

We will choose d subject_to\tbg constraint

I rf Tk
|2 _(R_- d.0.) = 0
0''s ;2 14 o
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NI wper

n IS n
2 2 2
[Rg=y11% < 20} 1Py (R= ] an |17+ [ ] a;e,1(%

(5.9)

Let V be the matrix with i,jth entry vij n <ei,ej> given

by

1l 1 N
<ei,ej> = é K(ti,u)du{é K(tj,v)R(u,v)dv - kElx(tj,sk)R(u,sk)mk}

N 1 N
- 221K(ti.sz){gk(tj,V)R(sg,v)dv-kzlx(tj,sk)R(sE,sk)wk}

(5.10)
and let X and ] be the n x m and n x n matrices with entries
{Xui} and {Uiﬁ} respectively, qiven by (5.4) and (5.5).

By Lemma 2.8 with 60 = Ry the solution Rs to the

problem: Find y of the form

! n - " )
= dy (ng+ey) (5.11)
Yy .iZl 174 i
to minimize
oo~ 2 n .
‘!pl(gs"lz,di“i)l| + 411 a5yl (5.12)
=4 . L=
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subject to

i

n IS
'Ipo(Rs-.zldini)'lz =0 (5.13)
12

is given by

Ry = E(s)(xs'lx')'lxs'l(n+s) é
i

- A AA_g A -1~ A 3

+ £(s) (57 -s7ix (s x ") L5y (neey (5.14a) i

where
$(s) = (6;(8),0,(8), e c0p(s))
(5.14b)
E(s) = (£, () ,8508) . E_(s))
S=]+vV
and

A A 3

= )
n+e (n1+€l.n2+ez,-..nn+en) .

ki

Any "optimal” approximation to Rs will depend on the un-

Juach I Gk

known V. Thus it is desirable here to approximate V using
whatever information is available. A plausible approximation

is

vV = Al (5.15)

®

where A is a "guestimate" of the mean diagonal element of V,

il
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. 1
A = 5 ) <ej,€4%, {(5.16)

this “"questimate" being based on (5.10) with i = j and the

properties of the quadrature formula being used.

Let Rs,xi # Dbe given by (5.14) with V replaced by AI,
that is,

-~

Rg,) = 6(s) (xs]

1 1

X') xs;1(n+e)

lf\ AN ll\

+ £(a) (571-8Ttx x5 %) LS (e (5.17)

where

§A = ) + AlL.

Then an estimate z, for z(s) is defined by

~ -~

zx(s) = <z'Rs,k> {5.18)

with

lz(s)-2, ()| < |l2||IRg-R, 1|
The function zy defined by (5.18) is in ¥ and may be written

> 1 1

z, = ¢(XS, X')XS, (5.19)
+ £(S) -5, X (xS "X") TS )
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where ¢ and £ are vectors of elements of # with ¢ as in

{4.3} and

£ = (61'52"°'En)

~ ey

with € given by (5.3). By Lemma 2.7, zZ, is the solution

to the problem: Find ze # to minimize

1 ~ 2 1 2
iil (uy=<ng,z>) < + 2 5 (L,z) Jds (5.20)
where
~ N
<n,,2z> = kZl K(t;,s,)u z(s.), i=1,2,...n

and A is of the order of magnitude of the mean square quadrature error,
Thus, if the primary source of error in forming a com-
putational estimate of z(s) is quadrature error, then this
shows that an appropriate choice for the regularizing para-
meter a of (1.6) is as A, an estimate of the mean square
quadrature error, as defined by (5.10) and (5.16).

We have not mentioned the choice of guadrature formula.
Once the quadrature points {Sk}§=l are chosen, the choice of
best formula in the sense of Sard is equivalent to approxi-
mating the element n;e# by a linear estimation of the
elements {Rsk}§=l' The optimum coefficients in this case
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are readily seen to depend on the unknown integrals. Heuce
a convenient quadrature formula which allows a "guestimate"
of ) should he used.

As is widely known, as soon as there are experimental
or computational errors, there is a point of diminiching re-
turns in choosing n too large. If, e.g. K(t,s) is continuous
then |iz—1|| and ||§—1|| + » as n becomes large, where ||-||
is the spectral norm. We will quantify this statement and
indicate a mitigating technique. To simplify the egquations,
we let Mvz =0, v=1,2,.,..m. Then we nay let

1

u; = <£i+ei.z> = g K(ti,s)z(s)ds, i=1,2,...n {(5.21)

n

where {Ei}1=1

are given by (5.3} and €; = Ei—Ei. Then, by
Theorem 4.2 the solution to the problem: Find zed taq

nminimize

n - 2 1 2 )
i;ﬂ (v -<€;,2>)° + A {) (L,2) gds o 7{5.'22)
is given by Z,
A _ "~ ~ "'l" , ) ‘
zy = E(J4AI) Tu {5.23,

~5(- #7300




and

"~ 2 ~
|z(s)—zA(s)| = |<z~zA,Rl,s>| =
<2y Ry o ol < [zl 1Ry gRy o Al] (5.20)

where

-~

n ~
R Y. 4, (g +ey)

with d = (d,,d4,...d ) given by

d = £(s) (372

with £(s) given by (5.14b).
Now

-~

IR, =R, _ 112 < 20|R, - § ;£ 11%]a,¢e;112)
l,s "1,s,2 - "o1,s 571 ivi

['as I

il

(5.25)

If V is the matrix with i,jth entry vij'= <ei,ej>, then the

term in brackets in (5.25) may be expanded as

#3790 -5]-




Ry(s,8) = 26(8) (T "IE(8) + £(s) (D T (fan) e sy

1

+ £(s) Gean) " tvaan) e sy (5.26)

and some algebraic mamipulation gives that (5.26) is equal to

R, (s,8) - E(S)S'IE(S)' + E(S)f—l/zAf-l/zg(s)' (5.27)
A"l/z . h—l
where ) is the symmetric square root of ] ~ and
A= Jan Y2202 (fan 7t (5.28)

Letting PE denote the projection operator onto the subspace

spanned by {gi}2=l , we have

IIPer, |12 = E(s)f’IE%s) (5.29)

£1,s

Lines (5.25), (5.27), (5.28) and (5.29) yield the bound

~ ~ o

N 2
“~ ~ 4
HRy g Ry g a1 2 lelnl,s'PERl,s|l +

S O R TR Ev B TN ] (5.30

ey

i 22 RN i, RN 7 30

ATHE |

=3

If V = AI, the term in curly brackets in (5.30) can be replaced

by A||(2+AI)_1||. In practice as N, the number of quadrature

=52= . #990
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points becomes large, one expects [|V]]| to decrease to a
finite limit imposed by round off errors. As n(n<<N), the
number of data points, becomes large, |lR, _-P;R, _|| de-
l,s "£1,s
creases, however, AII(Z+AI)—1||2 will increase for )\ bounded
below since II(Z)_1|| + ® as n + o,
Let H = {hzi} be a p * n matrix of real numbers of

rank p. Let

i=1 i

~ n

€y = 1.2-1 hy (€5 (5.31)
n n 1

u, = 1£1 hy.u, = 1£1 hyo é K(t;,s)z(s)ds, & =1,2,...p.

~

. ”~ n A p
as before, only replacing the set {Ei}i=1 by {52}z=1 and
the numbers {ui}2=1 by {gi}g, an error bound analogous to
the right hand side of (5.30) is obtained of the form
2 ¢ ' "'ll '
[0 Rt +a) )| jrvE'+2T] | D)

2
2({[R P.R, _||“ + ||PaR
g s ;

i,s” 1,s

(5.32)
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where P, is &he projection operator onto the subspace
spanned’by {El)z=l' If the rows of H are orthonormal vectors
in Euclidean n-space, then the term in curly brackets in (5.32)
can only be decreased, as compared to the term in brackets in
(5.20), while the first term in (5.32) may, for large n,

and n-pP, may not increase much, as compared to the first

term in (5.30). If V ~ AI, then the “optimum” choice of

H to minimize the term in brackets in (5.32) is to choose

the rows of H as the eigenvectors corresponding to the p

largest eigenvalues of }.

6. 'Statistical Estimation' of Solutions to Integral Equations

It is far from coincidental that the method of re-
gularization and the method of statistical estimation lead
to the same numerical solution. Let R(s,s') be a continuous

positive definite kernel on S x S, and # _ the reproducing

R
xernel Hilbert space associated with R, Let Z (s), seS be a

stochastic process (i.e. a family of random variables in-

dexed by s), with EZ(s) 0 ZJ and

FZ(s)Z(s"') R(s,s') (6.1)

2] without real loss of generality
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Let X(t,s) satisfy the assumptions of the corollary to

Theorem 1.1 and consider the stochastic model
U(t) = f K(t,s)Z(s)ds (6.2)
)

where ohservations will be taken on the random variables
U(ti), i=12,2,...n. U(t) is a well defined random variable
for every teT. We have been studying the (deterministic)

model

u(t) = f K(t,s)z(s)ds (6.3)
S

where ze Y and the numbers u(ti), i=1,2,...n are available.

R’
The purpose of this section is to demonstrate rigorously that
the same numerical solution to the integral equation is ob-

tained wether the true 'solution' is considered to be an

element zc H_, or a realization of a stochastic process Z(s)

R

with covariance R(s,s').

Let hz be the Hilbert space spanned by the stochastic

process {Z(s),seS}. (See [6]). ﬁz is defined as follows:
All random wvariables Y which are finite linear combinations

of the form

Y =} agz(s,) s,€S (6.4)
%

are in nz. An inner product on the linear manifold of all
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such finite linear combrinations is

<X ,¥,> = EY Yy, {6.5)

and liz is the closure of this linear nanifold with the

given innexr product. The precise source of the duality be-

tween 'deterministic' and statistical models is the following

(wvell known) fact:

Nz is iscometrically isomorphie to nR under the
isomorphism induced by the cortespondence "7,

%2(s) ~ Rg R VsES (6.6}

Furthermore, the random variable Ye “Z corresponds to the

element ne HR if and only if
EYZ(s) = <n,R.> = nis), 8zS ' (6.7}

The family of random variables U(t), teT are all in &, by

our assumptiocns on K{t,s) and
uit) ~ ny (5.8)

where n, is defined, for each t, by (1.25). Let {¢v}$=1

be a specified set of m orthonormal elements in &, and let

#990
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{pv}t_l be the m random variables in by which correspond to
{¢v}$=1 under the iscmorphism induced by (6.6). It can then

be shown that 2(s), sc£8 has a representation of the form

m
Z(s) = ] p,¢ (s} + 2Z,(s) (6.9)
v=1

where Zl(s) is a zero mean stochastic process with

EZ)(s}Zy(s') = Ry(s,s') = R(s,s') - [ ¢ (s)¢ (s') (6.10)

v=1
and Epvpu = 6u,v' p,v = 1,2...m. Let Z(s) be, for each s,
that random variabhle in the subspace of # 7 spanned by
n s e
{U(ti)}i=1 which minimizes
o . 2
E(Z(s) - Z(s)) (6.11)

subject to

E(Z2(s) - Z(s)lpv,v =1,2,..n) =0, (6.12)

It follows from Lemma 2.2 and (6.6) with the identifica-

tions Z(s) =~ GO,U(ti) ~Nye Py~ ¢v' and /[ K(ti,s)zl(s)ds ~ £

v i’

that
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i) = ¢(s) (x§ 1x) " Ixy "ty |
i

s ) (7Y - IRy Tk e (6.13)

where

¢(8) = (d,(s8), ¢,5(8),...9 (s))
£(s) = (&,(8), E,(8),...E (s))

X and ] are as in (2.1), and U is the vector of random

variables given by j
U= (U(tl). U(tz),---U(tn))
Thus, the numerical value Z(s) based on the model (6.2)

and a "realization" U(ti) = u,, i=1],2,...n, is exactly the

same as the numerical wvalue of zo(s) of (4.11}, based on

the model (6.3). An identical statement may be made about ;

;x(s) of (5.19) if we replace (6.2) by the stochastic model

N
Uty - k£1 K(t;,s, )u2(s,) + c(t;) i = 1,2,...n(6.14)

=58~ #9990




where

Eclty) =0
Ef(ti)t(t_j) = 0, i4 3
= A, 1=3
E x(ti)Z(sk) = 0, i=11,2,...n

k=12,...N

*
If we let ¥ g be the Hilbert space of all continuous

g K3 * »
linear functionals on then & _ is consequently

R’ R
isometrically isomorphic to Jiz under the corresmrondance
Z\S) -~ NS

where N is the continuous linear functional defined by

2
N
[}
N
—
i
—
-
N
Iyl

Then

U(ti) ~ At.

where At is the continuous linear functional defined by
i
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A = f K(t ls)z(s)dsl z2¢ ¥
ti S i

It is seen that the geometry for approximating 2(s) by
{U(ti)}?=1 is exactly the same as the geometry for

n
approximating N_ by {Ati}ivl .

An experimenter approaching the problem with the model

(6.2) chooses the prior covariance R(s,s') of (6.1) according

to his belief or past experience concerning Z(s). The

numerical analyst, beginning with (6.3) should choose an R

such that the norm of the solution z in uR is known or

believed to be small.

It is clear that algorithms for the numerical solution

of a broad variety of (linear) equations can, in fact, be

identified with prediction problems on stochastic processes

in this manner.
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